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In general, a disease manifests not from malfunction of individual molecules but from failure of the relevant system or network, 
which can be considered as a set of interactions or edges among molecules. Thus, instead of individual molecules, networks or 
edges are stable forms to reliably characterize complex diseases. This paper reviews both traditional node biomarkers and edge 
biomarkers, which have been newly proposed. These biomarkers are classified in terms of their contained information. In par-
ticular, we show that edge and network biomarkers provide novel ways of stably and reliably diagnosing the disease state of a 
sample. First, we categorize the biomarkers based on the information used in the learning and prediction steps. We then briefly 
introduce conventional node biomarkers, or molecular biomarkers without network information, and their computational ap-
proaches. The main focus of this paper is edge and network biomarkers, which exploit network information to improve the ac-
curacy of diagnosis and prognosis. Moreover, by extracting both network and dynamic information from the data, we can de-
velop dynamical network and edge biomarkers. These biomarkers not only diagnose the immediate pre-disease state but also 
detect the critical molecules or networks by which the biological system progresses from the healthy to the disease state. The 
identified critical molecules can be used as drug targets, and the critical state indicates the critical point of disease control. The 
paper also discusses representative biomarker-based methods. 
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Most complex diseases are caused by multiple factors, 
which must be investigated in a systematic and dynamical 
manner [13]. From a systems biology viewpoint, a disease 
results not from the malfunction of individual molecules but 
from failure of the relevant system or network, which can 
be considered as a set of interactions or edges among mole-
cules. Thus, complex diseases can be more reliably charac-
terized by networks or edges than by single molecules (i.e., 
genes, proteins, metabolites and other measurable biological 
elements). Network features can be used to indicate the state 

of a disease (diagnosis), estimate the effect of treatment or 
predict the survival time (prognosis). Networks and edges 
of biomolecules also play important roles in the phenotypic 
variations among plants and animals, which can be similarly 
used for the classification and prediction of phenotypes in 
evolutionary studies. 

Traditionally, researchers have used genetic or bio-
molecular biomarkers, also known as gene signatures or 
molecular biomarkers respectively, to distinguish particular 
biological phenotypes (e.g., states of complex diseases). In 
conventional clinical study, molecular biomarkers are  
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widely used for (i) diagnosing a disease state and (ii) pre-
dicting the outcome of a disease state (prognosis). The 
growing popularity of “P4 medicine”, i.e., predictive, pre-
ventive, personalized and participatory medicine has di-
verted our attention from passive treatment of disease to 
active prevention [2]. To reach the lofty targets of modern 
biomedical studies, early-warning signals should be detect-
ed and disease states should be predicted before the occur-
rence or serious deterioration of disease. Such early inter-
vention can halt the disease before it progresses to an irre-
versible state. Obviously, conventional molecular bi-
omarkers are not directly applicable to “P4 medicine” be-
cause they reflect biological elements rather than the pre-
dictors/causes of a disease. On the other hand, biological 
functions and signal transductions are facilitated by interac-
tions (regulations) between molecules, which constitute the 
edges in biological networks. Thus, P4 medicine relies on 
the networks and interactions among biological elements 
(such as genes, proteins and patients) rather than the bio-
logical elements themselves. Network analysis captures 
previously unobserved features in both the network (edges) 
and dynamics. Therefore, as our theoretical and clinical 
thinking has advanced, biomarkers have evolved from sin-
gle molecules (e.g., individual genes) to multiple molecules 
(e.g., gene sets), associated molecules (e.g., molecular net-
works) and finally to dynamical interactive molecules (e.g., 
dynamical molecule networks). From a network perspective, 
biomarkers are classified as node biomarkers, network- 
based biomarkers, network-weighted biomarkers, network 
(edge) biomarkers, and dynamical network biomarkers 
(DNBs) or dynamical edge biomarkers, as shown in Table 1. 
In particular, as components of general network biomarkers 
[4], edge biomarkers exploit information of interactions or 
associations among molecules, rather than individual mole-
cules. Many researchers have investigated the influence of 
perturbations on interaction networks. Perturbations fall into 
two categories; loss of gene products (‘node removal’, the 
removal of a node from the interaction network), and loss of 
protein or gene interactions (‘edge removal’, the removal of 
an edge from the interaction network). Recently, ‘edgetic’ 
disease has been identified as the result of an interaction 
removal (edge removal) rather than a gene removal (node 
removal) [5]. On the other hand, our recent EdgeMarker 
analysis [6] demonstrated that non-differentially expressed 
genes, which are traditionally ignored, can be as informative 
as differentially expressed genes for classifying biological 
conditions and sample phenotypes. All of the above studies 
indicate that edge biomarkers can provide new insights into 
the pathogenesis of complex diseases at the network level. 
The strength of an edge between two molecules is frequent-
ly determined by the molecules’ co-expression, measured 
by the Pearson’s correlation coefficient (PCC) [6].  

Next, we give a comprehensive review of the traditional 
node biomarker and the contemporary edge biomarker, and 

demonstrate the importance of edge biomarkers in transla-
tional biomedicine study. In Section 1, we first classify bi-
omarkers based on the network information used in the 
learning and predicting steps. Section 2 briefly introduces 
conventional node biomarkers without network information, 
while Section 3 describes the biological background and 
motivation of node biomarkers with network information in 
the learning procedure. Section 4 presents the major topic of 
this paper: the use of edge biomarkers with network infor-
mation in both learning and predicting procedures. Particu-
lar emphasis is placed on dynamical edge biomarkers, 
which exploit both network and dynamical information, and 
thus can detect pre-disease states that are missed by tradi-
tional biomarkers. Sections 2, 3 and 4 are accompanied by 
the computational approaches used to analyze the respective 
biomarkers. The paper concludes with several general re-
marks on biomarkers.  

1  Categories of biomarkers  

Biomarkers can be identified from observed samples or data 
(in a machine learning context) by a two-step process of 
learning and predicting. In the learning step, effective 
marker molecules that distinguish different phenotypes in 
samples are identified. Phenotypic examples are control and 
case samples, or normal and disease samples. The predic-
tion step decides the candidate phenotype of a test sample 
based on the identified marker molecules. Depending on the 
data used for learning and predicting, biomarkers [4] are 
grouped into several broad categories as shown in Table 1. 
Besides traditional node (molecular) biomarkers, these cat-
egories include network-based biomarkers and net-
work-weighted biomarkers, which use molecular network to 
identify sub-networks or edges from sample data in the 
learning step, but use only those molecules (or molecule set) 
related to the edges or sub-networks in the prediction step. 
Although sub-networks and edges are identified by network 
or correlation information, the edge or network information 
is excluded from the phenotypic prediction; thus, net-
work-based and network-weighted biomarkers are essen-
tially node biomarkers. In contrast, edge biomarkers, which 
include network biomarkers and dynamical network bi-
omarkers (DNBs), use network or edge information in both 
learning and predicting steps. As such, they form networks 
of marker molecules and are essentially different from node 
biomarkers. Rather than merely diagnosing a disease state, 
DNBs exploit dynamical information in the data [711], 
and thus can detect pre-disease states (or early-warning dis-
ease signals), which cannot be determined by traditional 
biomarkers. Note that the pre-disease state can be viewed as 
a special normal state immediately before the major deteri-
oration or critical transition of a disease [4]. In Table 1, bio- 
markers are also categorized by whether one or multiple 
samples are used in the predicting step.
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Table 1  Categories of biomarkers 

Biomarker categories 
Input data 

in learning step 
Output data 

in learning step 
Input data 

in predicting step 
Output data 

in predicting step 
Type of 

biomarker 

Molecular bio- marker, 
or gene-set biomarker 

Omics data for sam-
ples of two groups, 

e.g. gene expressions, 
protein expressions 

Identifying differential 
expression molecules 

(marker molecules) for 
classification of two groups 

Marker molecules with their 
expressions for one test sample 

Normal or disease state 
(control or case) 

Node bio- 
marker 

Network-based bio- 
marker, or gene-set 

biomarker 

Omics and interac-
tome data, e.g. gene 
expressions and Pro-
tein-Protein Interac-
tions (PPIs) or other 

network 
 

Identifying differential 
expression molecules 

(marker molecules) con-
strained by static network 

structure 

Marker molecules with their 
expressions for one test sample 

Node bio- 
marker 

Network-weighted 
biomarker-I 

(static network) 

Identifying differential 
expression molecules 

(marker molecules) or edges 
constrained by static net-

work structure 

Marker molecules with their 
expressions weighted by net-

work topology for one test 
sample 

Node bio- 
marker 

Network-weighted 
biomarker-II 

(correlation network) 

Identifying differential 
expression molecules 

(marker molecules) or edges 
constrained by correlation 

network 

Marker molecules with their 
expressions weighted by net-

work topology for one test 
sample 

Node bio- 
marker 

Network biomarker-I, 
or edge biomarker-I 

Identifying differential 
expression edges (marker 
edges) constrained by cor-

relation network 

Marker edges with their corre-
lation information for multiple 

test samples 

Edge bio- 
marker 

Network biomarker-II, 
or edge biomarker-II 

Identifying differential 
expression edges (marker 
edges) constrained by cor-

relation network 

Marker edges with their corre-
lation-like information for one 

test sample 

Edge bio- 
marker 

Dynamical network 
biomarker (DNB)-I or 

dynamical edge 
biomarker-I 

Identifying differential 
expression edges (marker 
edges) constrained by net-
work, based on deviation, 

covariance, and distribution 
of their molecule expres-

sions 

Marker edges with deviation, 
covariance of their molecule 
expressions for a number of 

test samples 

Normal or pre-disease 
state (control or case) 

Edge bio- 
marker 

Dynamical network 
biomarker (DNB)-II or 

dynamical edge 
biomarker-II 

Identifying differential 
expression edges (marker 
edges) constrained by net-
work, based on deviation, 

covariance, and distribution 
of their molecule expres-

sions 

Marker edges with deviation, 
covariance of their molecule 

expressions and their distribu-
tions for one test sample 

Edge bio- 
marker 

 
In contrast to node biomarkers, which are typically rep-

resented by differential expressions (i.e., the first-order sta-
tistics) of individual molecules or a molecular set, edge bi-
omarkers exploit the association or correlation information 
among molecules to predict the phenotype of a test sample. 
These associations are represented by differential correla-
tions and differential deviations (i.e., the second-order sta-
tistics) of molecules. The additional information provided 
by correlations or interactions not only improves the accu-
racy of phenotype prediction, but also reveals the biological 
or pathogenic mechanism underlying the marker molecules 
(e.g., the driver genes). Furthermore, by including the dy-
namic information of data, dynamical network biomarkers 
(or dynamical edge biomarkers) can diagnose a 
“pre-disease” or “un-occurred disease” state at an early 
stage. This concept is not new; it has been mentioned in 
Yellow Emperor’s Medicine (one of the earliest books on 
traditional Chinese medicine) 2000 years ago.  

2  Node biomarkers for classification and pre-
diction without network information 

Node (or molecular) biomarkers have been widely studied, 
especially for detecting and combating complex diseases. 
For instance, (i) the tumor suppressor genes BRCA1 and 
BRCA2, mainly involved in DNA damage repair and tran-
scriptional regulation, are well-known causal genes of 
breast, ovarian and similar cancers [12]. The chromosomal 
stability of these genes is altered by mutations. Somatic 
alterations weaken the genes’ suppressor ability, loosening 
their control on proliferation and ultimately leading to tu-
mor occurrence and development. (ii) Pre-diabetic individ-
uals show significant metabolic variations of a few im-
portant metabolites [13], which are expected to become 
novel markers for distinguishing impaired glucose tolerant 
(IGT) individuals from those with normal glucose tolerance. 
If pre-diabetic individuals with impaired glucose tolerance 
are treated early, their metabolisms can recover to the nor-
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mal state, avoiding the development of Type 2 diabetes 
(T2D). Thus, this small number of IGT-specific metabolites 
and their associated T2D-related genes/proteins could be 
newly exploited in T2D prevention. (iii) In the case of pain, 
neurological and psychiatric diseases, the acid-sensing ion 
channels (ASICs) play important roles in the central and 
peripheral nervous systems [14]. Investigations of these 
ASICs have revealed the molecular mechanism of extracel-
lular acid sensing by neurons. Potential inhibiting or poten-
tiating ASICs cause physiological and behavioral disorders, 
leading to disease occurrence and development. Collective-
ly, these studies have shown that one or a few molecules 
(e.g., master regulators) are important molecular indicators 
of the establishment and progression of complex diseases.  

In addition to conventional low-throughput technologies, 
high-throughput approaches (such as microarrays) have 
provided big data for identifying molecular biomarkers, 
enabling cheap effective methods for predicting human dis-
ease risk. At the level of conventional node biomarkers, 
these methods demonstrate the effectiveness of classifying 
samples by individual molecules at different scales, i.e., 
single genes and sets of genes. Several single genes have 
been already identified as disease biomarkers, especially in 
cancers. An example is the IL28B gene implicated in liver 
cancer [15,16]. More importantly, the driver mutations of 
genes have been identified in a genome-wide association 
study [17] using next-generation sequencing technology 
[18]. Genes inducing pathogenic physical changes are usu-
ally drivers rather than passengers of disease consequents 
[19]. However, gene sets [20] are known to improve the 
classification accuracy of marking complex disease pheno-
types, for the following reason. Unlike hereditary diseases, 
which always occur by mutations on a few genes, cancer 
and metabolic diseases (and many other complex diseases) 
[2123] are usually caused by numerous associated genes. 
There are different strategies for predicting disease states 
from sets of marker genes. First, the normal and disease 
states can be distinguished by differential expression of the 
identified marker genes [24]. Second, a common discrimi-
native gene group can be mined from multiple datasets [25], 
or multiple classifiers can be integrated from sets of marker 
genes [26,27]. These approaches enhance the robustness or 
consensus of sets of expression-dependent marker genes in 
heterogeneous disease cohorts. Finally, disease phenotypes 
can be characterized by differential enrichment rather than 
by differential expression [2831]; the so-called enrich-
ment-based approach or activity-based method [31,32]. 
According to this approach, pathogenic genotypes are char-
acterized by significant extent and number of differentially 
regulated genes in a particular gene set.  

Although conventional node biomarkers have greatly 
advanced the study of disease diagnosis, several formidable 
problems remain, including improved diagnostic accuracy, 
early diagnosis before the disease occurs or clinical symp-
toms appear, and therapy prediction. While these problems 

have been identified in conventional node biomarker studies, 
their solution requires biomarkers that integrate network 
information and even dynamical information, such as (dy-
namical) edge biomarkers. Such biomarkers have been ex-
tensively proposed and investigated in recent years 
[4,33,34], and are described in the next sections. 

3  Node biomarkers for classification and pre-
diction with network information limited to the 
learning step 

Biomarkers that integrate network information have re-
ceived much attention in recent translational biomedical 
research. Many studies have shown that signaling pathways, 
protein complexes, and sub-networks have more discrimi-
native power for identifying disease phenotypes than indi-
vidual gene and protein expression. For instance, condi-
tion-responsive genes (CORGs) integrate pathway infor-
mation or biological network into a new measurement of 
gene signatures [32], providing more robust indicators for 
characterizing disease samples. Similarly, a newly proposed 
multi-pathway-based method called Pathifier [35] trans-
forms gene-level information into pathway-level infor-
mation by a pathway deregulation score. Pathifier has re-
vealed highly reproducible, well-preserved and significant 
biological features of complex diseases. Many researchers 
have explored the causal associations between gene pairs 
and phenotypes to understand how perturbations influence 
interactome networks. As mentioned in the Introduction, 
perturbations are of two types; loss of gene products (‘node 
removal’, or removal of a node from the interactome net-
work), and loss of gene interactions (‘edge removal’, or 
removal of an edge from the interactome network). Interac-
tion (edge) removals, rather than gene (node) removals, are 
responsible for the so-called ‘edgetic’ diseases [5]. Thus, 
differentially expressed interactions or networks can pro-
vide more details about human pathogenic states and realize 
better molecular therapeutic strategies than conventional 
differentially expressed genes.  

Because network-associated biomarkers integrate differ-
ential gene expression and differential expression correla-
tions among genes, they characterize diseases in a reliable 
manner. Depending on the input and output data included in 
the learning and predicting steps (Table 1), biomarkers with 
network information are roughly divided into network- 
based biomarkers, network-weighted biomarkers, network 
(or edge) biomarkers, and DNBs or dynamical edge bi-
omarkers. Unlike other types of biomarkers, edge bi-
omarkers use network information to enhance the power of 
marker genes and their associations in both the learning and 
prediction steps.  

Network-based biomarkers use the network information 
only for selecting a set of molecules (or marker molecules) 
from a static background network in the learning step. 
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These marker molecules and their expressions are then used 
to identify the phenotype (e.g., normal or disease) of a test 
sample in the prediction step. Similarly, network-weighted 
biomarkers select marker molecules based on the network 
information. These markers, together with their expressions, 
are then weighted by the network topology before being 
input to the prediction step for phenotypic identification. 
Clearly, although network information (e.g., correlation) is 
used in the learning step, it is disregarded in the prediction 
step. Therefore, both network-based and network-weighted 
biomarkers are essentially node biomarkers. However, net-
work information is difficult to apply on a single test sample 
in the prediction step because, unlike gene expression, pairs 
of molecules or edges cannot be easily correlated in a single 
sample.  

On the other hand, network and edge biomarkers use 
static network information (e.g., background protein inter-
action networks) or dynamical network information (e.g., 
co-expression networks) to identify integrative marker 
molecules and their marker molecule-pairs (or marker edg-
es). These marker edges are then used in both learning and 
predicting steps. In particular, since DNBs or dynamical 
edge biomarkers extend the dynamical information to the 
prediction step, they can detect the pre-disease (or pre-  
transition) state immediately prior to disease occurrence. 
Clearly, because they exploit edges or networks, these bi-
omarkers can exist as simple network or edge biomarkers or 
can form a network of biomarkers. In addition, the difficulty 
of representing an edge or network using a single sample 
has been recently overcome [6], which greatly improves the 
feasibility of edge biomarkers in clinical practice. Repre-
sentative biomarkers with network information are summa-
rized in Table 2. Network-associated biomarkers are de-
tailed in the following subsections.  

3.1  Network-based biomarkers  

Chuang et al. [36] proposed the PinnacleZ approach for 
identifying so-called network markers. Network markers are 
not individual genes but sub-networks extracted from a 
protein interaction network. In PinnacleZ, the activity of 
each sub-network is defined as the regularized mean ex-
pression of the genes within it, and cancers are classified by 
the module activity profile rather than by the gene expres-
sion profile. Dao et al. [37] adopted to identify discrimina-
tive sub-network markers by a color coding technique im-
plemented in a network-based classification algorithm 
called OptDis. In this approach, features are sub-network 
markers rather than single genes, and feature values (marker 
expressions) are the average expression levels of genes in 
the sub-network. He et al. [38] proposed a network-based 
approach that identifies dysfunctional modules (DM) in 
context-specific protein-protein interaction networks, and 
classifies phenotypes by the aggregated expression activity 
of gene modules (e.g., the regularized mean expression of 

genes in a module). Jin et al. [40] developed an integrative 
pipeline for biomarker discovery (IPBD) that combines 
disease information and expression profiles for proteins and 
genes with protein-protein interactions. Indeed, Jin et al.’s 
paper coined the term “network biomarker”. For each sam-
ple, the intensity (expression) of a network biomarker is the 
weighted sum of intensities of genes in the network, where 
the weights are the P-values of the differential expression of 
each gene. Winter et al. [41] implemented a network-based 
approach called NetRank, which is similar to Google’s 
PageRank. This method ranks genes by their prognostic 
relevance based on both expression and network infor-
mation. The expression levels of the identified predictive 
marker genes are directly learned by a support vector ma-
chine, and the prognoses of tumor samples are categorized 
as poor or good. Eddy et al. [39] designed Differential Rank 
Conservation (DIRAC), a rank-based algorithm that con-
siders the combinatorial effect of gene interactions within a 
network (the pathways) and evaluate the differential net-
work rankings by quantitative measures such as rank dif-
ference scores. It should be noted that these quantitative 
measures are based on the ordering of gene expressions 
within the network but disregard the topological structure of 
the network. Obviously, all of the above methods extract 
discriminative gene sets constrained by the prior network in 
the learning step, but exclude the network or edge infor-
mation in the prediction step. Therefore, these biomarkers 
are essentially node biomarkers, at least from the viewpoint 
of biomarker application.  

3.2  Network-weighted biomarkers 

Alternatively, marker molecules can be identified from the 
prior network (with static network topology) in the learning 
step (see Class I network-weighted biomarkers in Table 2). 
The CORGs based classification method proposed by Lee et 
al. [32] infers the activity level of a given pathway by sum-
marizing the gene expression levels of the CORGs. Alt-
hough Lee et al. do not consider the topological structure of 
the pathway, this information could be accommodated in 
the method. The DART (denoising algorithm based on rel-
evance network topology) algorithm, recently designed by 
Jiao et al. [42], improves pathway activity estimates by fil-
tering out noise in advance. The algorithm first builds a 
pruned expression relevance network (as a co-expression 
network of genes), in which the noiseless pathway activity 
is computed as a metric on the largest connected component 
(e.g., the maximal connected sub-network of relevance 
network). Similar to the previous sub-network expression 
metric [32], the activity metric may be sign-weighted, 
which registers whether the genes involved in pathway reg-
ulation are up- or down-regulated, or topologically weighted, 
which considers the number of neighbors of a single gene 
on the relevance network. Recently, Wen et al. [43] devel-
oped a network-based approach that identifies the putative  
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Table 2  Examples of biomarkers with network information 

Methods Biomarker categories 
Biomarkers identified 

in learning step 
Indicator of biomarkers 

in predicting step 

PinnacleZ [36] Network-based biomarker 
Gene sub-network greedily identified in 

background network 
Activity of interactive genes 

OptDis [37] Network-based biomarker 
Optimally discriminative sub-network iden-

tified by color-coding technique 
Activity of interactive genes 

DIRAC [39] Network-based biomarker 
Variably expressed networks among pheno-

types identified by rank difference score 
Rank difference score according to the 

ordering of expressions of genes 

IPBD [40] Network-based biomarker 
Single-, paired-, triple-, square biomarkers 

selected by SVM 
Significance P-value weighted sum of 

expression intensity 

NetRank [41] Network-based biomarker 
Predictive marker genes identified by net-

work-based approach, e.g., Google’s 
PageRank 

The expression level of each marker gene, 
and no kind of aggregation was used 

DM [38] Network-based biomarker 
Dysfunctional modules identified based on 
information flow and mutual information 

Aggregated expression activity of interac-
tive genes in module 

CORGs [32] 
Network-weighted 

biomarker-I 
A new classification method based on con-

dition-responsive genes 
Summarizing the gene expression levels 

of pathway’s CORGs 

DART [42] 
Network-weighted 

biomarker-I 

Noise-less pathway activity as a metric on 
the largest connected component of pruned 

expression relevance network 
Weighted expression activity 

PCM [43] 
Network-weighted 

biomarker-I 

Putative causal module identified by MCL 
based on PPI and integrating epigenomic 

data, gene expression data 

Activity as degree-weighted mean expres-
sion of genes in one module 

NBS [44] 
Network-weighted 

biomarker-I 

Subtypes identified by a network-based 
stratification method to integrate tumor 
somatic mutations with gene networks 

‘Network-smoothed’ profiles or mRNA 
expression signature 

NGF [45] 
Network-weighted 

biomarker-I 

Logic functions (e.g., decision trees) as 
sub-networks in prior network identified by 

Network-Guided Forests 

Expressions of genes in identified 
sub-networks and their decision values 

CDN [46] 
Network-weighted 

biomarker-II 

Module biomarker as a core of differential 
networks corresponding to different cancer 

developmental stages 
Expression of marker genes 

DHP [47] 
Network-weighted 

biomarker-II 

Inter-modular hub and intra-modular hub 
proteins investigated in the changed in-

teractome and their predictive relation with 
patient outcome 

Expression differences of significant hubs 
and their interactors 

CRV [48] 
Network-weighted 

biomarker-II 

Carcinogenesis relevance proteins identified 
by protein association models and protein 

association networks mapping to normal and 
disease 

Mapping errors of gene expressions on 
two protein association networks 

CTN [49] 
Network biomarker-I or 

edge biomarker-I 
Extracting patient-specific temporal gene 

biclusters 
Similarity score based on bicluster simi-

larity and its PPIScore 

EdgeMarker [6] 
Network biomarkers-II or 

edge biomarker-II 

Extract discriminative information from 
non-differentially expressed genes by dif-

ferentially correlated gene pairs 

Co-expression values of differentially 
correlated gene pairs 

DNB [711] 
Dynamical network 

biomarker-I 

Pre-disease state and critical point detected 
by dynamical network biomarker on multi-

ple samples 

DNB index determined by high expression 
variance, high intra-correlation and low 

inter-correlation 

ENA [50] 
Dynamical network 

biomarker-I 

Network of molecular pairs rebuilt based on 
higher-order statistics information among 

molecules 

Predictive index determined by high ex-
pression variance, high intra-correlation 

and low inter-correlation 

DNB-S [10] 
Dynamical network 

biomarker-II 

Pre-disease state and critical point detected 
and predicted by dynamical network 

biomarker for one test sample 

DNB-S index determined by differential 
expression distributions compared to a 

group of control samples 

 
causal module (PCM) biomarkers of complex diseases by 
integrating epigenomic data, gene expression data, and pro-
tein–protein interaction networks. In this method, the mod-
ules are extracted from the protein interaction network by a 
Markov clustering algorithm (MCL), and their activities are 
defined as the degree-weighted mean expression of genes in 
each module. Dutkowski et al. used the network-guided 
forests (NGF) algorithm to identify logic functions (e.g., 
decision trees) with the same topological structure as the 
sub-networks in a prior network [45]. NGF is expected to 
connect the activity of each predictive module to the activi-
ty of its component genes. Hofree et al. [44] implemented a 

novel network-based stratification method (NBS) that inte-
grates tumor somatic mutations with gene networks. In sev-
eral steps, this method builds a robust stratification of pa-
tients (subtypes). First, it prepares the binary mutation pro-
files, then projects these profiles onto a human gene interac-
tion network. A ‘network-smoothed’ profile is generated by 
network propagation and entered into the NetNMF algo-
rithm, which clusters patients into subtypes. Patient assign-
ments are then consolidated by consensus clustering. This 
method also classifies mutation-derived subtypes, based on 
which an mRNA expression signature can also be applied 
for subtype prediction.  
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Other methods identify molecular markers from extract-
ed discriminative gene sets constrained by the correlation 
network in the learning step (see Class II network-weighted 
biomarkers in Table 2). Taylor et al. [47] investigated 
changes in the organization of the interactome and their 
predictive relations with patient outcomes. They identified 
tissue-specific inter-modular hub proteins and tissue-  
common intra-modular hub proteins. Each hub protein and 
its co-expressed interacting partners constitute one module 
(DHP: dynamical hub and partner). Individual patients are 
assessed not by their gene expressions, but by their differing 
expressions of significant hubs and their interactors. 
Meanwhile, using protein association models, Wang et al. 
[48] constructed a network-based biomarker (CRV) that 
identifies proteins implicated in carcinogenesis and per-
forms diagnostic evaluation. The CRV provides two protein 
association networks corresponding to the normal and dis-
ease states. In particular, a new sample can be classified as 
normal or diseased based on the mapping errors of its gene 
expressions onto the two protein association networks. Liu 
et al. [46] presented a differential network based approach 
(CDN: core of differential networks) for identifying disease 
genes and dysfunctional sub-networks during multi-stage 
cancer progression. In CDN, the module biomarkers of dis-
ease risk are sets of genes (where risk is evaluated from 
overlapping genes among differential networks correspond-
ing to different cancer developmental stages). However, 
similarly to their network-based counterparts, network- 
weighted biomarker methods extract the discriminative gene 
sets constrained by the network in the learning step, but 
ignore the network or edge information in the prediction 
step. Thus, weighted biomarkers are also essentially node 
biomarkers. In fact, network-weighted biomarkers and fol-
low-up network (or edge) biomarkers are very similar; the 
main difference is that network-weighted biomarkers (such 
as DHP [47] and CRV [48]) recognize discriminative mol-
ecules (nodes) in the learning step, whereas network bi-
omarkers identify discriminative molecule-pairs (edges). 

We reiterate that all of the above network-based and 
network-weighted biomarkers are node biomarkers rather 
than edge or network biomarkers. Both categories examine 
the expressions of individual marker molecules in the pre-
diction step. Network-weighted biomarkers must also esti-
mate the expression weights in the learning step, since the 
weights must balance the trade-off between the learning and 
prediction accuracies. Network-weighted biomarkers-I (of 
Class I in Table 2) and network-weighted biomarkers-II (of 
Class II in Table 2) differ chiefly in that the former uses a 
static network structure while the latter uses a dynamical 
network structure. Thus, Class II network-weighted bi-
omarkers can be expected to not only identify discrimina-
tive molecules as disease markers but also reveal condi-
tion-specific interactive maps among molecules, by which 
researchers could unravel disease mechanisms. 

4  Edge biomarkers for classification and pre-
diction with network information in both learn-
ing and predicting steps 

The main advantage of edge biomarkers (or dynamical edge 
biomarkers) is their inclusion of network information in the 
prediction step. Note that predicting human phenotype gen-
erally requires several samples for calculating the correla-
tions among nodes/genes (e.g., Pearson’s correlation coeffi-
cient) or edge/gene pairs (higher-order statistics or correla-
tions). In clinical practice, however, diagnosis or prognosis 
is evaluated on individuals. Constructing and interpreting 
correlation-like information in the prediction step of pheno-
typic diagnosis is difficult when very few test samples are 
available. To address this problem, several studies have 
investigated the edge biomarkers of single samples. Math-
ematical and computational approaches for phenotype pre-
diction are broadly classifiable into multi-sample-based 
approaches (if multiple samples are available for use in the 
prediction step) [50] and single-sample-based approaches (if 
a single sample is available) [10]. Note that a group of 
nodes constitutes a node set, but a group of edges is a net-
work. This implies that edge biomarkers are equivalent to 
biomarker networks. Representative analysis methods for 
network and edge biomarkers and their dynamical equiva-
lents are discussed in the following subsections. 

4.1  Network and edge biomarkers  

Qian et al. [49] proposed a multi-sample-based approach for 
analyzing Class I network and edge biomarkers. Their 
method, called CTN (classifying time series gene expres-
sion via integration of biological networks) improves the 
classification and realizes reliable and sound predictions 
[49]. CTN hybridizes a hidden Markov model (HMM) and 
Gaussian mixture models (GMMs) to explore the 
time-dependence of the expression data, and thereby im-
prove the prediction results. The learning step first infers the 
gene states by the HMM/GMM hybrid model, which con-
verts the original gene expression level into a discrete gene 
state. Gene biclusters of each patient are then extracted from 
the temporal gene state matrix by a QL-biclustering algo-
rithm, based on the suffix string and longest common prefix 
extracts. Each bicluster is assigned a PPI score based on the 
connection of its contained genes within the protein–protein 
interaction network (PPI). In the prediction step, the pheno-
type of each test patient is predicted by PPI-SVM-KNN 
(where KNN denotes k-nearest neighbors algorithm) ac-
cording to the bicluster similarity (Jaccard index) of the 
patient and the PPI score of the bicluster. In experiments, 
learning of the early-stage data improved the performance 
of the later-stage phenotype prediction.  

The EdgeMaker approach of Zhang et al. [6] is a sin-
gle-sample-based approach for Class II network and edge 
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biomarkers. EdgeMaker identifies edge biomarkers (differ-
entially correlated gene pairs) by representing the edges in a 
new vector format. This method optimizes the classification 
ability and overcomes the difficulty of using edge infor-
mation from a single sample in the prediction step, because 
each edge is represented as a correlation-like vector. Edge-
Marker can predict or diagnose the phenotype of individual 
samples from the edge information, which is a major ad-
vantage of the method. In particular, theoretical and com-
putational experiments show that the obtained edge bi-
omarkers accurately distinguish phenotypes even when their 
genes are not differentially expressed. The results also sup-
port that non-differentially expressed genes, which are usu-
ally ignored by traditional methods, can be as informative as 
differentially expressed genes when assigning a biological 
condition or phenotype to a sample [6]. This finding   
provides new insight into the pathogenesis of complex dis-
eases.  

4.2   Dynamical network biomarkers and dynamical 
edge biomarkers 

Chen et al. [7] developed a multi-sample-based approach 
for Class I dynamical network and edge biomarkers. This 
approach fully utilizes the second-order statistics, i.e., the 
expression deviations and inter-molecular correlations, to 
detect pre-disease rather than conventional disease states [7]. 
Here, the pre-disease state is defined as the normal state of 
an individual immediately before critical transition to the 
disease state, i.e., the limit of the normal state. Traditional 
node and edge biomarkers can distinguish between disease 
and normal states, but usually cannot diagnose the 
pre-disease state [7] because the molecular expressions of 
normal and early disease states are not significantly differ-
ent. DNBs do distinguish between the pre-disease and nor-
mal states because they detect the early-warning signals of 
complex diseases regardless of sample size [7,8]. Identifica-
tion of DNB molecules (a group of molecules) is based on 
the following theory: as the system approaches the 
pre-disease state or the critical transition, (i) the expression 
of the DNB molecules dramatically deviates from that of 
the normal state; (ii) the expression correlation between any 
two DNB molecules increases; (iii) the expression correla-
tion between any molecule in the DNB and any molecule in 
the non-DNB decreases. Unlike the critical slowing-down 
theory [51], DNB theory does not require a large number of 
samples from each individual, and detects the early-warning 
signals of critical transitions directly from the high-dimen- 
sional data. Thus DNB is a model-free approach for ob-
serving big data.  

Inspired by the DNB, Yu et al. [50] proposed an edge 
network that exploits the higher-order statistical information 
among molecules. In this approach, the traditional 
node-network representing the first-order statistics distin-
guishes the disease from the normal state, whereas the 

edge-network representing the higher-order statistics (ENA: 
edge-network analysis) distinguishes the pre-disease state 
from the normal state. At the molecular level, a biological 
system can be described by a stochastic dynamics model 
comprising a master equation or stochastic differential 
equations [52]. By linearizing the system and assuming a 
Gaussian distribution of the components, the system can be 
exactly expressed by two sets of equations; one evolving the 
mean vector of molecules (first-order statistical representa-
tion), and the other evolving the covariance matrix of mol-
ecules (second-order statistical representation). If the equa-
tions involving the covariance matrix are omitted from this 
model, the model reduces to the traditional node (molecular) 
networks (such as gene and protein interaction networks) 
[50], which cannot represent the stochastic dynamics of the 
original system. In other words, a node-network represents a 
biological system in the absence of stochastic fluctuation or 
noise. By contrast, since an edge-network reflects the sec-
ond-order statistical information of a dynamical system, it 
captures the stochastic dynamics of the original biological 
system as well as the node network (assuming that the ex-
pression levels of each molecule are Gaussian-distributed). 
Theoretically, the first-order statistical information (node 
network) distinguishes between diseased and normal sam-
ples by identifying molecular biomarkers (e.g., node bi-
omarkers). The higher-order statistical information (edge- 
network) additionally distinguishes between pre-diseased 
and normal samples by identifying edge biomarkers (such 
as dynamical network biomarkers) [50]. This additional 
information is crucial for early diagnosis or prediction of a 
disease.  

A single-sample-based approach for Class II dynamical 
network and edge biomarkers is the DNB-S scoring method 
of Liu et al. [10]. This method was developed to identify the 
pre-disease states of single samples (given a group of nor-
mal control samples) by exploring the distributions of dif-
ferential expressions of the pre-detected DNB and 
non-DNB molecules [10]. Intuitively, the expressions of 
DNB molecules should display a double-peak (bimodal) 
distribution in the pre-disease state but a single-peak distri-
bution in the normal state. By contrast, the expressions of 
non-DNB molecules display a single-peak distribution in 
both normal and pre-disease states. Thus, if multiple control 
samples are available, the differential expression distribu-
tions between the pre-detected DNB molecules and 
non-DNB molecules can be estimated for any single sample. 
These differential distributions, recorded as the DNB-S 
score, can predict the pre-disease state of a test sample. 
When a biological system progresses from the normal to the 
pre-disease state, the DNB-S score alters as follows: (i) The 
K–L divergence of the test and control samples with regard 
to molecular DNB expression increases, because the ex-
pression distributions of the DNB molecules widely differ 
between the two samples; (ii) The K–L divergence regard-
ing the expression distributions of the DNB and non-DNB 
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molecules increases, because the differential distributions of 
the DNB molecules differ from those of non-DNB mole-
cules in the pre-disease test sample; (iii) The K–L diver-
gence of the test and control samples regarding the expres-
sion distributions of non-DNB molecules exhibits no sig-
nificant change, because the expressions of non-DNB mol-
ecules are unaltered in the normal and pre-disease states. 
Collectively, these behaviors imply that if the DNB-S score 
of a test sample is much higher than a trained threshold, this 
sample is in the pre-disease state. Like its DNB predecessor, 
the DNB-S scoring method is a model-free approach for 
identifying an at-risk individual before the disease appears 
or seriously degrades the individual’s health. Furthermore, 
the DNB-S scoring method fully utilizes high-dimensional 
data information to compensate for insufficient samples, 
and thus detects the pre-disease state from a single sample 
based on high-throughput data. 

5  Conclusion 

The “big data” era [5358] has provided exciting opportu-
nities for biomarker study and “P4” medicine. To achieve 
predictive, preventive, personalized and participatory medi-
cine [2], we must identify accurate and reliable biomarkers 
for classifying and predicting the state of a test sample. This 
paper has reviewed the features and computational methods 
of various biomarkers from static nodes to dynamical edges 
biomarkers. Below, we highlight the special considerations 
of edge biomarker study.  

(i) Many traditional approaches identify the discrimina-
tive networks or edges by network-based or edge-based 
methods. Test samples are then classified based on the 
genes or proteins (or gene set) involved in the identified 
networks or edges, rather than on the networks or edges (or 
their correlations) themselves. Such approaches are essen-
tially node-biomarker based methods because the networks 
or edges are used only to identify discriminative genes or 
node-biomarkers. Zhang et al. [6] developed a novel method 
that represents edges in a correlation-like vector format. 
Although this approach identifies the discriminatively dif-
ferentially correlated gene pairs as edge biomarkers, and 
thereby predicts the phenotype of individual test samples, 
more effective methods that exploit edges and their correla-
tions are required for determining normal or diseased states 
of single samples.  

(ii) In contrast to the first order statistics (i.e., average 
gene expressions) used in traditional networks or bi-
omarkers, higher-order statistics (e.g., deviations and co-
variances of gene pairs as second order statistics, skewness 
as a third-order statistic, and kurtosis as a fourth-order sta-
tistic) provide rich information of the original systems. This 
additional information is excluded in traditional network 
analysis. In theory, the original stochastic dynamics can be 
fully recovered by including sufficiently high-order statis-

tics. The edge network developed in [50] represents net-
work nodes by their second-order statistics, and thereby 
significantly improves disease prediction. High-order statis-
tical information is expected to become widely explored in 
future biomarker study.  

(iii) Both the network and its dynamics are important 
facets of living organisms, and collectively characterize the 
states of biological systems in a reliable and stable manner. 
Thus, how to incorporate dynamical information into bi-
omarkers is a key future direction. DNB theory, which 
merges nonlinear dynamics and statistics besides exploring 
the network information, detects early-warning signals of 
critical transitions to the disease state [7]. Although DNB 
can in principle determine the critical state and the leading 
molecules prior to drastic transition from the observed data 
alone, eliminating the large amount of noise and developing 
an efficient algorithm for accurately detecting the DNB 
molecules is required in future.  

(iv) In addition to the “bad” molecules (e.g., disease 
genes), we are also interested in biomarker identification of 
“good” molecules (e.g., health and longevity genes) and 
human networks. Quantifying “health” and “wellness” 
states of humans is an important task requiring both net-
work and dynamical information. This problem is closely 
related to resilience and robustness evaluation in systems, 
and can be measured by DNB theory [7]. The concept is 
illustrated in Figure 1. Health eventually reaches a critical 
state due to gradual changes in internal or external factors, 
which can be measured by DNB if big dynamical data are 
available (Figure 1A and C). By detecting critical factors 
(including “good” molecules) and critical networks (i.e., 
DNB) and appropriately attenuating the “bad” molecules 
while enhancing the “good” molecules, we can expect to 
significantly improve human health (that is, we can signifi-
cantly delay the critical state). These scenarios are illustrat-
ed in Figure 1A→B and C→D. In particular, DNB can de-
tect the leading molecules and network by which the entire 
system begins to progress from one state (e.g., health state) 
to another (e.g., unhealthy state). Thus, the drastic deterio-
ration of an individual’s health can be prevented by appro-
priately treating or perturbing the leading molecules [7]. In 
other words, health and wellness can be encouraged by en-
hancing the “good” genes before the critical transition to 
disease, rather than applying treatment once the disease has 
appeared (Figure 1). Such a strategy of treating “un-    
occurred” disease (equivalent to the pre-disease or critical 
state) is endorsed in the ancient Chinese text Yellow Em-
peror’s Medicine, which states that the best doctor treats 
un-occurred disease, the better doctor treats occurring dis-
ease, and the inferior doctor treats occurred disease. By of-
fering a means of detecting incipient disease, dynamical 
network biomarkers may significantly benefit preventative 
medicine and health welfare.  

Similar to disease study, networks or edges could be ex-
ploited in the evolutionary study of plants and animals, 
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Figure 1 (color online)  Quantifying human health conditions and “good” genes and networks by dynamical network biomarkers. DNB can quantify the 
health or wellness state of a person by measuring its “distance” from the limit or critical state based on collective fluctuations of big data. The critical state of 
a healthy person is eventually reached by gradual changes in internal or external factors (A), which can be measured by DNB analysis of big dynamical data 
(C). In contrast to traditional passive treatment of “bad” molecules after disease occurrence, human health could be improved by detecting and enhancing 
crucial health factors (including “good” molecules) and networks (note that the members of DNB are closely related to these important molecules) before the 
critical transition to disease. That is, we can significantly delay the critical state or critical transition (B and D). In particular, DNB detects the leading mole-
cules and network that initially drive the system from one state (e.g., health) to another (e.g., disease). Drastic deteriorations in health could be prevented by 
appropriately treating or perturbing the precursors of the diseased state.  

since they largely characterize the variations used for phe-
notypic classification and prediction. 
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Appendix 

Differential-network-based methods   

Network biomarkers discriminate among samples with different phenotypes. Many alternative network-related studies infer 
groups of significantly differentially expressed genes interacting in context-specific or differential networks. These differen-
tial networks are considered to represent different disease phenotypes (Table S1). In fact, interactome architectures are known 
to be massively rewired during a cellular or adaptive response. Thus, identifying differential networks by exploring interac-
tion spaces rather than gene spaces has become a standard network analysis technique [59]. For example, gene network en-
richment analysis (GNEA) is a simple methodology that searches for significant aberrations in the collective expression of a 
set of interactive genes (whose protein products form a connected protein complex or sub-network) rather than aberrant ex-
pression of individual genes [60]. Another method (dysregulated gene set analysis via subnetworks; DEGAS) identifies 
sub-networks that are significantly enriched by dysregulated genes during disease [61]. Differential dependency network 
(DDN) analysis exploits the differential topological changes in biological networks. Based on a local dependency model, 
DDN detects significant topological changes in the transcriptional networks between two biological conditions, rather than 
changes in their expression levels [62,63]. By contrast, principal network analysis (PNA) captures the major dynamic activa-
tion patterns and their associated protein and metabolic sub-networks under multiple conditions [64]. Meanwhile, West et al. 
[65] found that cancer cells can be characterized by differential network entropy (DNE). Focusing on the differential func-
tional changes of biological networks, they found that differences in gene expression in normal and cancer tissues an-
ti-correlate with changes in local network entropy. Specifically, genes driving cell-proliferation in cancer cells or encoding 
oncogenes are usually associated with reduced network entropy. Another framework, differential expression network (DEN), 
is based on the ‘dysfunctional interaction’ concept. DEN characterizes the differential information involved in different dis-
ease stages by integrating the differential gene and differential network paradigms [66]. A dysfunctional interaction results 
from either node perturbations (i.e., interaction perturbations caused by the differentially expressed individual genes) or edge 
perturbations (i.e., interaction perturbations caused by the differentially co-expressed genes). A new model, called progres-
sive module network (PMN), uses DNBs to identify the modules presenting at the pre-disease stage. It then detects the mod-
ules in the advanced stage by cross-tissue gene expression analysis; and finally finds the modules related to early disease de-
velopment by a progressive module network [67]. 

Table S1  Examples of differential-network-based methods for biomarkers 

Methods Differential gene expression Differential gene co-expression Scale of differential network 

GNEA [60] Yes  A set of interactive genes 

DEGAS [61] Yes  Dys-regulated genes enriched on sub-networks 

DDN [62,63]  Yes Local dependency network 

PNA [64] Yes Yes Major dynamic activation patterns within sub-networks 

DNE [65] Yes Yes Local change of differential network entropy 

DEN [66] Yes Yes Global differential expression network 

PMN [67] Yes Yes 
Network modules, module network and its 

re-organizations 
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